
替换下面代码:
cube_numbers = [] for n in range(0,总结知道10): if n % 2 == 1: cube_numbers.append(n**3)为列表生成式写法:
cube_numbers = [n**3 for n in range(1,10) if n%2 == 1]尽可能多使用下面这些内置函数:
单机处理较大数据量时,生成器往往很有用,技巧因为它是总结知道分小片逐次读取,最大程度节省内存,技巧如下网页爬取时使用yield。总结知道
import requests import re def get_pages(link): pages_to_visit = [] pages_to_visit.append(link) pattern = re.compile(https?技巧) while pages_to_visit: current_page = pages_to_visit.pop(0) page = requests.get(current_page) for url in re.findall(<a href="([^"]+)">, str(page.content)): if url[0] == /: url = current_page + url[1:] if pattern.match(url): pages_to_visit.append(url) # yield yield current_page webpage = get_pages(http://www.example.com) for result in webpage: print(result)替换下面代码:
a = [1,2,3,4,5] b = [2,3,4,5,6] overlaps = [] for x in a: for y in b: if x==y: overlaps.append(x) print(overlaps)修改为set和求交集:
a = [1,2,3,4,5] b = [2,3,4,5,6] overlaps = set(a) & set(b) print(overlaps)Python支持多重赋值的风格,要多多使用。总结知道
first_name,技巧 last_name, city = "Kevin", "Cunningham", "Brighton"Python查找最快、效率最高的高防服务器总结知道是局部变量,查找全局变量相对变慢很多,技巧因此多用局部变量,总结知道少用全局变量。技巧
itertools模块支持多个迭代器的操作,提供最节省内存的技巧写法,因此要多多使用,服务器托管总结知道如下求三个元素的全排列:
import itertools iter = itertools.permutations(["Alice", "Bob", "Carol"]) list(iter)位于functools模块的lru_cache装饰器提供了缓存功能,如下结合它和递归求解斐波那契数列第n:
import functools @functools.lru_cache(maxsize=128) def fibonacci(n): if n == 0: return 0 elif n == 1: return 1 return fibonacci(n - 1) + fibonacci(n-2)因此,下面的递归写法非常低效,存在重复求解多个子问题的情况:
def fibonacci(n): if n == 0: # There is no 0th number return 0 elif n == 1: # We define the first number as 1 return 1 return fibonacci(n - 1) + fibonacci(n-2)上面提到尽量多使用内置函数,如下对列表排序使用key,operator.itemgetter:
import operator my_list = [("Josh", "Grobin", "Singer"), ("Marco", "Polo", "General"), ("Ada", "Lovelace", "Scientist")] my_list.sort(key=operator.itemgetter(0)) my_list 亿华云(责任编辑:域名)